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Abstract 

Unified field structures are defined and reviewed. Under certain conditions these are 
shown to be dynamical systems. And quantizable dynamical systems are shown to be 
unified field structures with invariant Riemannian metric. Spin structure is reviewed and 
manifolds M 8k+4 with spin structure are shown to be symplectic. 

1. Introduction 

A dynamical system (D.S.) is pair  (E2"+1,s smooth  (=C  | manifold E, 
d i m E  = 2n + 1, and 2-form Q of  rank 2n (i.e. (s -- s A " -  A s r 0). I f  

n 

ds = 0, then (Ezn+l,s is a D.S. with integral invariant (D.S.L). E 2"+1 is 
an almost contact manifold if there is a 1-form co and a 2-form 7r such that  
co A (Tr)" # 0 at every point  o f  E. Pair (EZn+l,co) is a contact manifold if 
co A (dco)" r 0 at every point  o f  E. In either case, there is uniquely associated 
a canonical  vector field C e v(E) of  Cartan-Reeb characterized by i (C)  co = 1 
and i (C)~ = 0 (resp. i(C)dco = 0). In the latter case, Cartan 's  identity, 
~ ( X ) c o  = i(X)dco + di(X)co, for  X =  C gives 5((C)oJ = 0 - -where  ~ is 
the Lie derivative, i is the inner product  and d is the exterior derivative; 
this states that  C is an infinitesimal au tomorphism of  the contact  structure. 
I f  (E, co) is a contact  manifold, then s = dco has rank 2n and ds = 0, so 
(E,s is a D.S.L 

In  two recent studies (Hurt,  1968, 1970b) I defined a quantizable D.S. 

(Q.D.S.) as the principal toral bundle ~:: T - +  E P-~ M over (symplectic) 
manifold M, where E carries 'dynamic '  contact  structure co; that  is, co 
defines a connection on E. C is non-zero,  vertical (i.e. tangent to the fiber 
at each point), and generates on E an effective, transitive action of  the torus 
T as group of  diffeomorphisms. The orbit  space M = E/C is symplectie 
(Hausdorff  manifold),  since projection o f  s = do) on M is closed of  
maximum rank (i.e. ds = 0, (s ~ 0). 

t This research was supported in part by NSF GP-13375. 
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Structures of type ~: have a considerable history in twentieth-century 
physics. Kaluza (192I) and Klein (1926) introduced a five-dimensional 
'stationary' Riemannian manifold E i.e. a Riemannian manifold admit- 
ting a (unit) vector field C ~ s o  1-parameter group ~t = exp (tC), with respect 
to which the five-dimensional Riemannian metric is invariant. The orbit 
space M = E/C of this group is a four-dimensional manifold which is taken 
as space-time, the projective space for general relativity. Modifications were 
made by Einstein & Mayer (1931-2). Veblen & Hofmann (1930, 1933), van 
Dantzig (1932), Schouten & van Dantzig (1933), Schouten (1935) and with 
Haantjes (1936), Haantjes (1937), Thomas (1926, 1934), Whitehead (1936), 
following Weyl (1921) and Eddington (cf. Eisenhart, Veblen and T. Y. 
Thomas in the 19200, and Caftan (1924) introduced projective relativity 
theories of the form ~: where E is an n + 1-dimensional manifold with 
affine connection admitting a 'concurrent' vector field C [i.e. locally the 
line element of E has the form ds 2= (dx~+l)2+ G~b(x~ b where, 
a, b = 1 . . . . .  n, and G~b(x ~) is a Riemannian metric on some n-dimen- 
sional subspace] with respect to which the affine connection is invariant; 
and M, the n-dimensional manifold with projective connection is the space 
of orbits of C. Vranceanu (1936) and Yano (1937, 1938a) identified space- 
time with a non-holonomic hypersurface ('distribution') in E. Cf. also Pauli 
(1933), Einstein-Bergmann (1938), Jordan (1947"), Bergmann (1948), 
Lichnerowicz-Thiry (1947"), Thiry (1951), Yano-Ohgane (1952, 1955) and 
references therein; surveys &the status of these theories--Jordan-Thiry and 
Einstein-Schrrdinger--are in texts of Pauli, Bergmann and Lichnerowicz 
(1955), where those references marked with an asterisk are given. 

Clearly then, ~: is the basic structure of unified field theory, called fibred 
spaces of certain types and studied by Mut6 (1952), Yano & Davies (1959) 
and Yano & Ishihara (1966, 1967a, b, c), cf. also the general formalism 
of Souriau (1958, 1964) to treat five-dimensional theories. 

2. Unified Field Structures 

The structure of unified field theory is given by data (E, M, p, C, co; 
7 or g), namely, a pair of smooth manifolds E "+1, M" under a smooth, 
onto mapp of maximum rank (=dimM), thus a fiber bundle by Ehresmann; 
C a non-zero vector field on E tangent to each fiber everywhere (=vertical); 
1-form oJ on E such that co(C) = 1 and s co = 0; and finally E has either 
an (torsionless) affine connection 7 invariant by 5e(C) or an invariant, 
positive definite Riemannian metric g--i.e. ~Lf(C)g = 0 and g(C, C ) =  1, 
in which case E has invariant, torsionless affine connection, namely the 
Riemannian connection given by g, and 1-form ~o is taken to be co(X) = 
g(X, C), X ~ v(E) [so ~o(C) = 1 and ~q~ = 0]. Let us abbreviate this by 
unified field structure (of a certain type: invariant affine connection or 
invariant Riemannian connection). 

In either case, the 2-form f2 = d~o is closed (as is its projection on M). 
[If locally ~o = p~ dx t (Einstein summation convention), p~ local components 
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of  C, then pipi = 1, where Pi =g~iP j, denoted 'El' by Yano (1952, etc.), 
is just the statement co(X) = g(X, C), co(C) = 1 ; and ~Q = dco = �89 dx~ ^ dxJ 
where 4iJ = O~pj - O~pi, O~ = O/axt.] Thus we have 

Proposition 1. If  s e is a unified field structure and if s =dco is of maximum 
rank n, then (E"+1,s is a D.S.I. 

Sasaki (1960) showed that (E, co, ~r) is an almost contact manifold iff there 
is tensor field 4 of type (1, 1) over E, with C and co as above, such that 
oJ(C) = 1 and 4 o 4 = - 1  + co. C (also, ~(C) = 0, co o ~b = 0). Every almost 
contact manifold admits a positive definite Riemannian metric g such that 
g(X, C) = co(X) and g(4X, 4 Y) = g(J(, Y) - co(X) co(Y) for X, Y ~ v(E). 
Data (4, C, co, g) is then called almost contact metric (Riemannian) struc- 
ture. Defining s by s Y) = g(X, ~ Y), then X2 is 2-form of  rank 2n. By 
Sasaki (1960) and Hatakeyama (1962) we have 

Proposition 2. If (E,~2) is a D.S., then E admits an almost contact metric 
structure (q~, C, co, g) such that f2(X, Y) = g(X, ~ Y). 

Corollary 3. I f  (E, co) is a contact manifold, then there is a 4 and g on 
E such that (4, C, co, g) is an almost contact metric structure such that 
co(C) = 1, dco(C, X) = 0 and dco(X, Y) = g(X, 4 Y). 

Remarks. (1) If locally a tensor field 4 is 4j *, then 4~J = g,h 4j ~ is a skew- 
symmetric tensor of rank 2n; s = �89 dx* ^ dxJ. (2) If  m" = rno(xi), a, b = 1, 
. . . .  n, are local coordinates of M, let p,~ = Oim" and note that p~pa = O, 
etc. And Gab of Section 1 is given by G "b =p,pjbg, j .  (3) Equations for 
geodesics (Maxwell's equations, trajectory of test particle, variational 
principle and field equations) are given in works of Yano and co-workers 
(1952, 1967); of. Lichnerowicz (1955). 

An almost contact, metric structure (4, C, co, g) such that C is a Killing 
vector with respect to g, i.e. 5~(C)g = 0, is called a K-contact structure. 
By the result of  Hatakeyama (1963) we have 

Proposition 4. If  ~ is a Q.D.S. (i.e. E is a regular or 'dynamic' contact 
manifold), then (4, C, co, g) is a K-contact structure. 

Thus from Cor. 3, Prop. 4 and the remarks in Section 1, we have 

Proposition 5. If  s c is a Q.D.S., then s e is a unified field structure with 
invariant Riemannian metric. 

As a partial converse, Yano & Ishihara (1967b) have shown 

Proposition 6. Unified field structure ~ with invariant Riemannian metric 
g on E is a K-contact manifold for data [4 = (1/l)H, C, w, g], where H 
is a second fundamental tensor in E [i.e. H X = - V x ~ C ,  X h denoting the 
horizontal part of  X ~  v(E)] and I is a non-zero constant, iff the sectional 
curvature with respect to any section containing C is a constant (=l 2) 
everywhere in E iff pair {pg, p[(1/l)H]} is an almost K/ihlerian structure. 
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Examples. Yano & Ishihara (1967b) have shown that if ~ is unified field 
structure with invariant Riemannian metric and non-zero constant curva- 
ture k, then M is even dimensional (E odd dimensional), k is positive, and 
induced structure {pg, p[(1/l)H]} is a K/~hlerian structure of positive 
constant holomorphic sectional curvature kM; k = n ( n +  1)l z, kM= 
n(n + 2)l 2. So for odd dimensional sphere S 2"+1 with natural Riemannian 
metric g of positive constant curvature 1, if p: S 2"+a - +  M 2n is a unified 
field structure with invariant Riemannian metric g, then M z"= P"(C), 
p is the natural projection, and pg gives the natural K~ihlerian structure 
of positive constant holomorphic sectional curvature. ~ : T ~  S 2"+a ~ P"(C) 
(Hopf fibering) is a Q.D.S., namely n + 1 independent harmonic oscillators 
with equal periods, cf. Hurt  (1970a). 

3. Spin Structures 

The basic structure to general relativity (cf. Lichnerowicz et al., 1964) 
is an SL-structure, where SL is a complete homogeneous Lorentz group. If 
M is (Minkowski) space-time, so a smooth oriented (compact) manifold of 

hyperbolic type, SL(p,q)(SO(p,q)) -+ F(M) --~ M is a principal bundle of 
orthonormal frames. Spin structure exists if there is an extension 

Spin(p,q) -+ F(M)  --~ M 

SL(p,q) -+ F(M) ~ M 
SO(p,q) 

where F (M)  is the double covering of F(M) and Spin(p,q) is a non-trivial 
double covering of SL(p, q) (SO(p, q))--i.e. 

t cr 

1 ---> Z2(=Trl SL(p, q) (SO(p, q))) -+ Spin(p, q) ---> SL(p, q) (SO(p, q)) --> 1 

(p + q ~> 3); that is, when an SL(SO)-bundle can be lifted to a Spin-bundle. 
The set of isomorphism classes of double coverings, e.g. spin structures, 
is in one-one correspondence with elements of the cohomology set 
HI(F(M), Z2), which have a non-trivial restriction to HI(SO(n), Z2). From 
the exact sequence [see Milnor (1963), Bichteler (1968), Geroch (1968) and 
Atiyah-Bott (1968)] 

~r* i* 
. . .  _ + / - / I ( M ,  Z2) -+ Ha(F(M),Z2) - +  

T 

H1(SL(n) (SO(n)), Z2) ---> HZ(M, Z2) - + " "  

where z is the transgression in fibering F(M)--> M, or from the exact 
sequence [see, for example, Lichnerowicz (1968) and Kamber & Tondeur 
(1967)] 

. . . .  > Ha(M, rr, SL(n)(SO(n)) = Z2) -+ Ha(M, Spin(n)) -+ 

H 1(34, SL(n) (SO(n))) ---> H2(M, zc I SL(n) (SO(n)) = Zz) --> �9 �9 �9 
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(where Q denotes the G-valued sheaf  of  germs of  cont inuous functions 
M ~ G), we have ~(~) = - r 6 ( 0  is the obstruct ion of  the lifting of  an SL(SO)- 
bundle ~: on M to a Spin-bundle [where M is a C/V-complex and t is the 
fundamenta l  class of  SO(n) with natural  or ienta t ion--~ ~ H~(SO(n), 
~rl SO(n)) ~- Hom(~rl SO(n),rq SO(n))]. That  is, ~: can be lifted to a Spin(n)- 
bundle iff 3(~) = w2(~) ~ HE(M, Z2), the second Stiefel-Whitney class, 
vanishes. Thus  we have 

Proposition 7 (Borel-Hirzebruch,  Haefligher, Shapiro,  and others). M has 
spin structure iff ~ = WE(M ) = 0. 

Since ker i* = ~r* H i ( M ,  Z2), we have 

Proposition 8 (Milnor). I f  M is a spin manifold,  then the number  of  
distinct spin structures is equal  to the number  of  elements of  H~(M, Z2). 

Let  V~ ~ Hi(Mn, Z2) be the Wu class o f u  ~ H " - i ( M " , Z 2 )  [i.e. u U Vi (cup 
product)  = Sq~(u), where Sq ~ is Steenrod opera tor ;  cf. Spanier (1966)]; so, 
wzq(M) = SqqVo = Vq2; etc. As M 2n is symplectic iff for  every class 
u ~ Hn(M 2n, Z2), u 2 = 0, which occurs iff V, = 0, we have 

Lemma 9. M 2n is symplectic iff V, = 0. 
We recall the result of  Massey (1960) ,which states that  if  M "  is a compact ,  

orientable smooth  manifold  sans boundary ,  then w,_~(M) = 0 for  n even 
and n = 2rood4.  Thus  if M "  is spin manifold,  then Sq2Hn-z(m, z2)= 0, 
so V4k+2 = 0 for  k ~> 0. Therefore,  for  2n - 4 rood8  we have 

Proposition 10. f f  M 8k+4 has spin structure, then M sk+4 is symplectic. 
C o m p a r e  T h o m a s  (1967); for  fur ther  details see Hur t  (1969a). 
Thus  a class of  symplectic (Hamil tonian)  dynamical  systems is given by 

manifolds  M 8k+4 which carry  spin structure. 
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